A Non - Uniform Finitary Relational Semantics of System
نویسنده
چکیده
We study iteration and recursion operators in the denotational semantics of typed λ-calculi derived from the multiset relational model of linear logic. Although these operators are de ned as xpoints of typed functionals, we prove them nitary in the sense of Ehrhard's niteness spaces. 1991 Mathematics Subject Classi cation. 03B70, 03D65, 68Q55.
منابع مشابه
A Non-uniform Finitary Relational Semantics of System T
We study iteration and recursion operators in the denotational semantics of typed λ-calculi derived from the multiset relational model of linear logic. Although these operators are defined as fixpoints of typed functionals, we prove them finitary in the sense of Ehrhard’s finiteness spaces. 1991 Mathematics Subject Classification. 03B70, 03D65, 68Q55.
متن کاملSemantics of linear logic and higher-order model-checking. (Sémantique de la logique linéaire et "model-checking" d'ordre supérieur)
This thesis studies problems of higher-order model-checking from a semantic and logical perspective. Higher-order model-checking is concerned with the verification of properties expressed in monadic second-order logic, specified over infinite trees generated by a class of rewriting systems called higher-order recursion schemes. These systems are equivalent to simply-typed λ-terms with recursion...
متن کاملFiniteness spaces
We investigate a new denotational model of linear logic based on the purely relational model. In this semantics, webs are equipped with a notion of “finitary” subsets satisfying a closure condition and proofs are interpreted as finitary sets. In spite of a formal similarity, this model is quite different from the usual models of linear logic (coherence semantics, hypercoherence semantics, the v...
متن کاملFinitary Semantics of Linear Logic and Higher-Order Model-Checking
In this paper, we explain how the connection between higherorder model-checking and linear logic recently exhibited by the authors leads to a new and conceptually enlightening proof of the selection problem originally established by Carayol and Serre using collapsible pushdown automata. The main idea is to start from an infinitary and colored relational semantics of the λY -calculus already for...
متن کاملExecution Time of Lambda-Terms via Non Uniform Semantics and Intersection Types
The relational semantics for Linear Logic induces a semantics for the type free Lambda Calculus. This one is built on non-idempotent intersection types. We give a principal typing property for this type system.We then prove that the size of the derivations is closely related to the execution time of lambda-terms in a particular environment machine, Krivine’s machine.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999